bn.fit, bn.fit.dnode, bn.fit.gnode,
bn.fit.cgnode or bn.fit.onode.## methods available for "bn.fit"
# S3 method for bn.fit
fitted(object, ...)
# S3 method for bn.fit
coef(object, ...)
# S3 method for bn.fit
residuals(object, ...)
# S3 method for bn.fit
sigma(object, ...)
# S3 method for bn.fit
logLik(object, data, nodes, by.sample = FALSE, ...)
# S3 method for bn.fit
AIC(object, data, ..., k = 1)
# S3 method for bn.fit
BIC(object, data, ...)## methods available for "bn.fit.dnode"
# S3 method for bn.fit.dnode
coef(object, ...)
## methods available for "bn.fit.onode"
# S3 method for bn.fit.onode
coef(object, ...)
## methods available for "bn.fit.gnode"
# S3 method for bn.fit.gnode
fitted(object, ...)
# S3 method for bn.fit.gnode
coef(object, ...)
# S3 method for bn.fit.gnode
residuals(object, ...)
# S3 method for bn.fit.gnode
sigma(object, ...)
## methods available for "bn.fit.cgnode"
# S3 method for bn.fit.cgnode
fitted(object, ...)
# S3 method for bn.fit.cgnode
coef(object, ...)
# S3 method for bn.fit.cgnode
residuals(object, ...)
# S3 method for bn.fit.cgnode
sigma(object, ...)
bn.fit, bn.fit.dnode,
bn.fit.gnode, bn.fit.cgnode or bn.fit.onode.k = 1 gives the expression used to compute AIC.TRUE, logLik returns a
vector containing the the log-likelihood of each observations in the
sample. If FALSE, logLik returns a single value, the
likelihood of the whole sample.logLik returns a numeric vector or a single numeric value, depending
on the value of by.sample. AIC and BIC always return a
single numeric value. All the other functions return a list with an element for each node in the
network (if object has class bn.fit) or a numeric vector or
matrix (if object has class bn.fit.dnode, bn.fit.gnode,
bn.fit.cgnode or bn.fit.onode).coef (and its alias coefficients) extracts model coefficients
(which are conditional probabilities for discrete nodes and linear regression
coefficients for Gaussian and conditional Gaussian nodes). residuals (and its alias resid) extracts model residuals and
fitted (and its alias fitted.values) extracts fitted values
from Gaussian and conditional Gaussian nodes. If the bn.fit object
does not include the residuals or the fitted values for the node of interest
both functions return NULL. sigma extracts the standard deviations of the residuals from Gaussian
and conditional Gaussian networks and nodes. logLik returns the log-likelihood for the observations in data.bn.fit, bn.fit-class.data(gaussian.test)
res = hc(gaussian.test)
fitted = bn.fit(res, gaussian.test)
coefficients(fitted)
coefficients(fitted$C)
str(residuals(fitted))
data(learning.test)
res2 = hc(learning.test)
fitted2 = bn.fit(res2, learning.test)
coefficients(fitted2$E)
Run the code above in your browser using DataLab